R
RStudio or other IDE
R packages (see Notes)
Prior knowledge of basic tidyverse functions.
If you are looking to learn how to use the R and the tidyverse for data science, we recommend R for Data Science. For more information about how R the programming language works, we recommend Advanced R.
What questions led to you taking this training?
When conducting population research, almost everything has a spatial aspect to it.
We just might not have access to it
For those we do, it is important to incorporate spatial techniques to explore our data
How does a variable vary by region?
Is there a relationship between variables by region?
How many facilities are within a region?
How far is the nearest facility?
Does proximity to a facility have a relationship with another variable?
How has access changed over time?
R is open source and reproducible
R is flexible
R can be used as part of a workflow or be the whole workflow
data.frame
or tibble
with a geometry list-column with the class sf
Shapefile | Geodatabase | Geojson | Geopackage | |
---|---|---|---|---|
Speed | Medium | Fast | Slow | Fast |
Size limit | 2 GB | 256 TB | No limit | 140 TB |
Files | At least 3 | Many | 1 | 1 |
Multiple Features | No | Yes | No | Yes |
Other Notes | Common | Proprietary | Plain Text | Open |
Simple feature collection with 157 features and 54 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -114.6334 ymin: 31.341 xmax: -109.04 ymax: 36.91705
Geodetic CRS: WGS 84
First 10 features:
OBJECTID OBJECTID_1 RUN_DATE source BUREAU FACID
1 1 2822 2024-05-06 ASPEN MED AZTH00002
2 2 2823 2024-05-06 ASPEN MED AZTH00003
3 3 2824 2024-05-06 ASPEN MED AZTH00004
4 4 3774 2024-05-06 ASPEN MED BH7347
5 5 4893 2024-05-06 ASPEN MED MED0198
6 6 4894 2024-05-06 ASPEN MED MED0201
7 7 4895 2024-05-06 ASPEN MED MED0203
8 8 4896 2024-05-06 ASPEN MED MED0204
9 9 4901 2024-05-06 ASPEN MED MED0209
10 10 4902 2024-05-06 ASPEN MED MED0211
FACILITY_N LICENSE_NU LICENSE_EF
1 BANNER- UNIVERSITY MEDICAL CENTER PHOENIX <NA> <NA>
2 BANNER UNIVERSITY MEDICAL CTR AT THE AZ HEALTH SC <NA> <NA>
3 MAYO CLINIC HOSPITAL <NA> <NA>
4 VIA LINDA BEHAVIORAL HOSPITAL SH11520 2023-03-01
5 CANYON VISTA MEDICAL CENTER H7130 2020-02-18
6 FLAGSTAFF MEDICAL CENTER H0169 2020-12-01
7 PAGE HOSPITAL H0086 2022-01-06
8 BANNER PAYSON MEDICAL CENTER H7250 2021-10-15
9 ABRAZO ARROWHEAD CAMPUS H0175 2021-12-01
10 BANNER BEHAVIORAL HEALTH HOSPITAL SH0147 2021-02-01
LICENSE_EX MEDICARE_I MEDICARE_1 MEDICARE_2 TELEPHONE FACILITY_T
1 <NA> 039802 <NA> <NA> (602)239-2716 NA
2 <NA> 039800 <NA> <NA> (520)694-0111 NA
3 <NA> 039801 <NA> <NA> (480)342-1900 NA
4 2025-02-28 034040 <NA> <NA> (480)476-7000 12
5 2024-12-27 030043 <NA> <NA> (520)263-2220 11
6 2024-11-30 030023 <NA> <NA> (928)779-3366 11
7 2024-12-28 031304 <NA> <NA> (928)645-2424 14
8 2024-12-24 031318 <NA> <NA> (928)471-3222 14
9 2024-12-27 030094 <NA> <NA> (623)561-1000 11
10 2024-12-24 034004 <NA> <NA> (480)448-7500 12
TYPE SUBTYPE CATEGORY ICON_CATEG
1 HOSPITAL TRANSPLANT HOSPITAL HOSPITAL
2 HOSPITAL TRANSPLANT HOSPITAL HOSPITAL
3 HOSPITAL TRANSPLANT HOSPITAL HOSPITAL
4 HOSPITAL PSYCHIATRIC HOSPITAL HOSPITAL
5 HOSPITAL SHORT TERM HOSPITAL HOSPITAL
6 HOSPITAL SHORT TERM HOSPITAL HOSPITAL
7 HOSPITAL CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL
8 HOSPITAL CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL
9 HOSPITAL SHORT TERM HOSPITAL HOSPITAL
10 HOSPITAL PSYCHIATRIC HOSPITAL HOSPITAL
MEDICARE_T LICENSE_TY LICENSE_SU
1 HOSPITAL - TRANSPLANT HOSPITAL FEDERAL ONLY <NA>
2 HOSPITAL - TRANSPLANT HOSPITAL FEDERAL ONLY <NA>
3 HOSPITAL - TRANSPLANT HOSPITAL FEDERAL ONLY <NA>
4 HOSPITAL - PSYCHIATRIC HOSPITAL HOSPITAL - SPECIAL
5 HOSPITAL - SHORT TERM HOSPITAL HOSPITAL - GENERAL
6 HOSPITAL - SHORT TERM HOSPITAL HOSPITAL - GENERAL
7 HOSPITAL - CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL - GENERAL
8 HOSPITAL - CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL - GENERAL
9 HOSPITAL - SHORT TERM HOSPITAL HOSPITAL - GENERAL
10 HOSPITAL - PSYCHIATRIC HOSPITAL HOSPITAL - SPECIAL
CAPACITY ADDRESS CITY ZIP COUNTY OPERATION_
1 0 1441 N 12TH PHOENIX 85006 MARICOPA ACTIVE
2 0 1501 NORTH CAMPBELL AVENUE TUCSON 85724 PIMA ACTIVE
3 0 5777 EAST MAYO BOULEVARD PHOENIX 85054 MARICOPA ACTIVE
4 120 9160 EAST HORSESHOE RD SCOTTSDALE 85258 MARICOPA ACTIVE
5 100 5700 EAST HIGHWAY 90 SIERRA VISTA 85635 COCHISE ACTIVE
6 268 1200 NORTH BEAVER STREET FLAGSTAFF 86001 COCONINO ACTIVE
7 25 501 NORTH NAVAJO DRIVE PAGE 86040 COCONINO ACTIVE
8 25 807 SOUTH PONDEROSA DRIVE PAYSON 85541 GILA ACTIVE
9 229 18701 NORTH 67TH AVENUE GLENDALE 85308 MARICOPA ACTIVE
10 156 7575 EAST EARLL DRIVE SCOTTSDALE 85251 MARICOPA ACTIVE
X_Is_Publi HOSPITAL_G KeyID ADHSCODE N_AddressT N_LocatorT
1 Yes <NA> AZTH00002 A AS0 CENTRUS-TOMTOM
2 Yes <NA> AZTH00003 A AS0 CENTRUS-TOMTOM
3 Yes <NA> AZTH00004 A AS0 CENTRUS-TOMTOM
4 Yes <NA> BH7347 A AS0 CENTRUS-TOMTOM
5 Yes <NA> MED0198 A AS0 CENTRUS-TOMTOM
6 Yes <NA> MED0201 A AS0 CENTRUS-TOMTOM
7 Yes <NA> MED0203 A AS0 CENTRUS-TOMTOM
8 Yes <NA> MED0204 A AS0 CENTRUS-TOMTOM
9 Yes <NA> MED0209 A AS0 CENTRUS-TOMTOM
10 Yes <NA> MED0211 A AS0 CENTRUS-TOMTOM
N_ADDRESS N_ADDR2 N_CITY N_COUNTY
1 1441 N 12TH ST <NA> PHOENIX MARICOPA COUNTY
2 1501 N CAMPBELL AVE <NA> TUCSON PIMA COUNTY
3 5777 E MAYO BLVD <NA> PHOENIX MARICOPA COUNTY
4 9160 E HORSESHOE RD <NA> SCOTTSDALE MARICOPA COUNTY
5 5700 E HIGHWAY 90 <NA> SIERRA VISTA COCHISE COUNTY
6 1200 N BEAVER ST <NA> FLAGSTAFF COCONINO COUNTY
7 501 N NAVAJO DR <NA> PAGE COCONINO COUNTY
8 807 S PONDEROSA ST <NA> PAYSON GILA COUNTY
9 18701 N 67TH AVE <NA> GLENDALE MARICOPA COUNTY
10 7575 E EARLL DR <NA> SCOTTSDALE MARICOPA COUNTY
N_FULLADDR N_LAT N_LON N_STATE
1 1441 N 12TH ST , PHOENIX, AZ 85006-2837 33.46410 -112.0562 AZ
2 1501 N CAMPBELL AVE , TUCSON, AZ 85724-0001 32.24080 -110.9443 AZ
3 5777 E MAYO BLVD , PHOENIX, AZ 85054-4502 33.66316 -111.9557 AZ
4 9160 E HORSESHOE RD , SCOTTSDALE, AZ 85258-4666 33.56670 -111.8840 AZ
5 5700 E HIGHWAY 90 , SIERRA VISTA, AZ 85635-9110 31.55449 -110.2319 AZ
6 1200 N BEAVER ST , FLAGSTAFF, AZ 86001-3118 35.20949 -111.6447 AZ
7 501 N NAVAJO DR , PAGE, AZ 86040-0959 36.91705 -111.4634 AZ
8 807 S PONDEROSA ST , PAYSON, AZ 85541-5542 34.23130 -111.3212 AZ
9 18701 N 67TH AVE , GLENDALE, AZ 85308-7100 33.65504 -112.2027 AZ
10 7575 E EARLL DR , SCOTTSDALE, AZ 85251-6915 33.48385 -111.9183 AZ
N_ZIP N_ZIP4 N_BLOCK RESERVATIO RESERV_ID R_METHOD
1 85006 2837 4.013113e+13 <NA> <NA> <NA>
2 85724 1 4.019002e+13 <NA> <NA> <NA>
3 85054 4502 4.013615e+13 <NA> <NA> <NA>
4 85258 4666 4.013941e+13 Salt River Reservation 3340F Coordinates
5 85635 9110 4.003002e+13 <NA> <NA> <NA>
6 86001 3118 4.005000e+13 <NA> <NA> <NA>
7 86040 959 4.005002e+13 <NA> <NA> <NA>
8 85541 5542 4.007001e+13 <NA> <NA> <NA>
9 85308 7100 4.013616e+13 <NA> <NA> <NA>
10 85251 6915 4.013218e+13 <NA> <NA> <NA>
oPCA oPCA_ID P_Method P_Reliable
1 CENTRAL CITY VILLAGE 39 Coordinates <NA>
2 TUCSON CENTRAL 107 Coordinates <NA>
3 DESERT VIEW VILLAGE 30 Coordinates <NA>
4 SALT RIVER PIMA-MARICOPA INDIAN COMMUNITY 62 Coordinates <NA>
5 SIERRA VISTA 123 Coordinates <NA>
6 FLAGSTAFF 10 Coordinates <NA>
7 PAGE 7 Coordinates <NA>
8 PAYSON 23 Coordinates <NA>
9 GLENDALE NORTH 56 Coordinates <NA>
10 SCOTTSDALE SOUTH 45 Coordinates <NA>
SOURCE_VW CASELOAD geometry
1 Tableau.vw_licensing_facilities <NA> POINT (-112.0562 33.46411)
2 Tableau.vw_licensing_facilities <NA> POINT (-110.9443 32.24081)
3 Tableau.vw_licensing_facilities <NA> POINT (-111.9557 33.66317)
4 Tableau.vw_licensing_facilities <NA> POINT (-111.884 33.56671)
5 Tableau.vw_licensing_facilities <NA> POINT (-110.2319 31.5545)
6 Tableau.vw_licensing_facilities <NA> POINT (-111.6447 35.20949)
7 Tableau.vw_licensing_facilities <NA> POINT (-111.4634 36.91705)
8 Tableau.vw_licensing_facilities <NA> POINT (-111.3212 34.2313)
9 Tableau.vw_licensing_facilities <NA> POINT (-112.2027 33.65505)
10 Tableau.vw_licensing_facilities <NA> POINT (-111.9183 33.48386)
Simple feature collection with 139 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -114.8163 ymin: 31.33234 xmax: -109.0452 ymax: 37.00372
Geodetic CRS: WGS 84
First 10 features:
CSA_ID CSA_NAME AREA_SQMILE POP2020 Shape__Area Shape__Length
1 1 Colorado City 5071.6400 8017 141389179634 1890568.8
2 10 Williams 4607.9690 10528 128462767671 2396775.1
3 100 San Luis 117.6636 37668 3280270845 307260.4
4 101 Gold Canyon 354.4739 15095 9882163593 502534.3
5 102 Florence 560.2777 37684 15619641198 848217.8
6 103 San Tan Valley 208.9516 114281 5825234969 348896.7
7 104 Saddlebrooke/Oracle 2165.1450 24960 60360749130 1342973.8
8 105 Maricopa 187.5613 63845 5228908746 352286.1
9 106 Coolidge 120.7299 17121 3365754248 306430.5
10 107 Casa Grande 825.9896 65107 23027262644 736741.1
SHAPE
1 MULTIPOLYGON (((-113.982 37...
2 MULTIPOLYGON (((-112.5724 3...
3 MULTIPOLYGON (((-114.625 32...
4 MULTIPOLYGON (((-111.04 33....
5 MULTIPOLYGON (((-111.0667 3...
6 MULTIPOLYGON (((-111.5609 3...
7 MULTIPOLYGON (((-110.4518 3...
8 MULTIPOLYGON (((-112.0127 3...
9 MULTIPOLYGON (((-111.5545 3...
10 MULTIPOLYGON (((-112.0303 3...
as_tibble = TRUE
Simple feature collection with 518 features and 9 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -114.7864 ymin: 31.33913 xmax: -109.0569 ymax: 37.17732
Geodetic CRS: WGS 84
# A tibble: 518 × 10
OBJECTID VENDOR_NAME ADDRESS CITY STATE ZIPCODE PHONE STREET_ADDRESS2
<int> <chr> <chr> <chr> <chr> <int> <dbl> <chr>
1 1 FRY'S FOOD AND D… 2700 W… TEMPE ARIZ… 85282 6.02e9 <NA>
2 2 FRY'S FOOD AND D… 3036 E… PHOE… ARIZ… 85016 6.02e9 <NA>
3 3 FRY'S FOOD AND D… 1835 E… TEMPE ARIZ… 85283 4.81e9 <NA>
4 4 FRY'S FOOD AND D… 1100 S… COTT… ARIZ… 86326 9.29e9 BUILDING A
5 5 FRY'S FOOD AND D… 9401 E… TUCS… ARIZ… 85710 5.21e9 <NA>
6 6 FRY'S FOOD AND D… 520 E.… PHOE… ARIZ… 85040 6.02e9 <NA>
7 7 FRY'S FOOD AND D… 201 N.… FLAG… ARIZ… 86001 4.81e9 <NA>
8 8 FRY'S FOOD AND D… 950 W.… PRES… ARIZ… 86301 9.29e9 <NA>
9 9 FRY'S FOOD AND D… 2480 N… TUCS… ARIZ… 85712 5.20e9 <NA>
10 10 FRY'S FOOD AND D… 7455 W… PEOR… ARIZ… 85381 6.23e9 <NA>
# ℹ 508 more rows
# ℹ 2 more variables: FULLADDRESS <chr>, geometry <POINT [°]>
Simple feature collection with 273 features and 32 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -114.7862 ymin: 31.36436 xmax: -109.9916 ymax: 36.91674
Geodetic CRS: WGS 84
First 10 features:
OBJECTID_1 OBJECTID RECID NAME
1 1 1 1 BANNER URGENT CARE
2 2 2 2 BANNER URGENT CARE
3 3 3 3 SUMMIT HEALTHCARE URGENT CARE
4 4 4 4 CARBON HEALTH
5 5 5 5 DIGNITY HEALTH URGENT CARE- GILBERT
6 6 6 6 DIGNITY HEALTH URGENT CARE- AHWATUKEE
7 7 7 7 PHOENIX CHILDREN'S SPECIALTY&URGENT CARE,E VLY OTC
8 8 8 8 HAVASU PRIMARY CARE AND PEDIATRICS
9 9 9 9 CARBON HEALTH
10 10 10 10 PHOENIX CHILDREN'S SPECIALTY & URGENT CARE NW CTR
ADDRESS CITY ZIP TELEPHONE
1 35945 NORTH GARY ROAD SAN TAN VALLEY 85143 4808275750
2 21980 NORTH 83RD AVENUE PEORIA 85383 6234656375
3 4951 SOUTH WHITE MOUNTAIN ROAD BUILDING A SHOW LOW 85901 9285323926
4 1880 EAST TANGERINE, SUITE 100 ORO VALLEY 85755 5209007007
5 1501 NORTH GILBERT ROAD GILBERT 85234 4807283000
6 4545 EAST CHANDLER BOULEVARD PHOENIX 85044 4807283000
7 5131 EAST SOUTHERN AVENUE MESA 85206 4808335437
8 1799 NORTH KIOWA BOULEVARD, SUITE 104 LAKE HAVASU CITY 86403 9285051030
9 1040 SOUTH HARRISON ROAD, SUITE 120 TUCSON 85715 5209095221
10 20325 NORTH 51ST AVENUE SUITE 116 GLENDALE 85308 6239725437
Latitude Longitude objID KeyID ADHSCODE N_AddressType N_LocatorType
1 33.20571 -111.5823 1 1 A ROOFTOP GOOGLE
2 33.68333 -112.2379 2 2 A AS0 CENTRUS-TOMTOM
3 34.20512 -110.0204 3 3 A AS0 CENTRUS-TOMTOM
4 32.42697 -110.9438 4 4 A AS0 CENTRUS-TOMTOM
5 33.37658 -111.7884 5 5 A AS0 CENTRUS-TOMTOM
6 33.30504 -111.9851 6 6 A AS0 CENTRUS-TOMTOM
7 33.39367 -111.7207 7 7 A AS0 CENTRUS-TOMTOM
8 34.50317 -114.3512 8 8 A AS0 CENTRUS-TOMTOM
9 32.20775 -110.7900 9 9 A AS0 CENTRUS-TOMTOM
10 33.67027 -112.1691 10 10 A AS0 CENTRUS-TOMTOM
N_ADDRESS N_ADDR2 N_CITY N_COUNTY
1 35945 North Gary Road <NA> San Tan Valley PINAL COUNTY
2 21980 N 83RD AVE <NA> PEORIA MARICOPA COUNTY
3 4951 S WHITE MOUNTAIN RD BLDG A <NA> SHOW LOW NAVAJO COUNTY
4 1880 E TANGERINE RD STE 100 <NA> ORO VALLEY PIMA COUNTY
5 1501 N GILBERT RD <NA> GILBERT MARICOPA COUNTY
6 4545 E CHANDLER BLVD <NA> PHOENIX MARICOPA COUNTY
7 5131 E SOUTHERN AVE <NA> MESA MARICOPA COUNTY
8 1799 KIOWA AVE STE 104 <NA> LAKE HAVASU CITY MOHAVE COUNTY
9 1040 S HARRISON RD STE 120 <NA> TUCSON PIMA COUNTY
10 20325 N 51ST AVE STE 116 <NA> GLENDALE MARICOPA COUNTY
N_FULLADDR N_LAT
1 35945 N GARY RD , SAN TAN VALLEY, AZ 85143-5748 33.20571
2 21980 N 83RD AVE , PEORIA, AZ 85383-1850 33.68333
3 4951 S WHITE MOUNTAIN RD BLDG A , SHOW LOW, AZ 85901-7827 34.20512
4 1880 E TANGERINE RD STE 100 , ORO VALLEY, AZ 85755-6238 32.42697
5 1501 N GILBERT RD , GILBERT, AZ 85234-2390 33.37658
6 4545 E CHANDLER BLVD , PHOENIX, AZ 85048-7643 33.30504
7 5131 E SOUTHERN AVE , MESA, AZ 85206-2799 33.39367
8 1799 KIOWA AVE STE 104 , LAKE HAVASU CITY, AZ 86403-2867 34.50317
9 1040 S HARRISON RD STE 120 , TUCSON, AZ 85748-6601 32.20775
10 20325 N 51ST AVE STE 116 , GLENDALE, AZ 85308-5665 33.67027
N_LON N_STATE N_ZIP N_ZIP4 N_BLOCK RESERVATIO RESERV_ID R_METHOD
1 -111.5823 AZ 85143 5748 4.021000e+13 <NA> <NA> <NA>
2 -112.2379 AZ 85383 1850 4.013614e+13 <NA> <NA> <NA>
3 -110.0204 AZ 85901 7827 4.017962e+13 <NA> <NA> <NA>
4 -110.9438 AZ 85755 6238 4.019005e+13 <NA> <NA> <NA>
5 -111.7884 AZ 85234 2390 4.013423e+13 <NA> <NA> <NA>
6 -111.9851 AZ 85048 7643 4.013117e+13 <NA> <NA> <NA>
7 -111.7207 AZ 85206 2799 4.013423e+13 <NA> <NA> <NA>
8 -114.3512 AZ 86403 2867 4.015953e+13 <NA> <NA> <NA>
9 -110.7900 AZ 85748 6601 4.019004e+13 <NA> <NA> <NA>
10 -112.1691 AZ 85308 5665 4.013614e+13 <NA> <NA> <NA>
PCA_NAME PCA_ID PCA_PCT geometry
1 SAN TAN VALLEY 92 100 POINT (-111.5823 33.20571)
2 PEORIA NORTH 48 100 POINT (-112.2379 33.68333)
3 SHOW LOW 15 100 POINT (-110.0204 34.20512)
4 ORO VALLEY 100 100 POINT (-110.9438 32.42697)
5 GILBERT NORTH 74 100 POINT (-111.7884 33.37659)
6 AHWATUKEE FOOTHILLS VILLAGE 42 100 POINT (-111.9851 33.30504)
7 MESA EAST 68 100 POINT (-111.7207 33.39367)
8 LAKE HAVASU CITY 6 100 POINT (-114.3512 34.50318)
9 TUCSON EAST 110 100 POINT (-110.79 32.20775)
10 GLENDALE NORTH 56 100 POINT (-112.1691 33.67026)
states()
, counties()
, tracts()
, block_groups()
, blocks()
, etc.cb = FALSE
cb = TRUE
The world is not flat
Any representation of the earth in 2 dimensions cannot preserve both shape and area
The projection you use will depend on the area of interest and your aim
The US Albers Equal Area Conic Projection is a standard for representing the lower 48
Each state has at least one state projection and the best one to may depend on who you ask
epsg.io is a good place to search for projections
sf
’s projection use st_transform
st_geometry
, by default plot will try to construct maps of every attribute within the sf
classst_geometry
, by default plot will try to construct maps of every attribute within the sf
classUse tigris to get county boundaries for the state of Arizona and overlay Arizona Hospitals (AZ_Hospitals.shp) within the Arizona Central projection (EPSG:26949) using ggplot2
Tips:
labs()
- map title, legend title, legend labelstheme()
and element_text()
- font, font size, colortheme_void()
- remove long lat and backgroundscale_fill_distiller
scale_fill_brewer
scale_fill_fermenter
scale_fill_fermenter
cartogram_cont
) - distorts shapecartogram_ncont
) - maintains shape, distorts sizecartogram_dorling
) - creates circles of weighted sizest_centroid
, scale_size
, and aes(pch = 20, size =
FIELD)
st_centroid
, scale_size_binned
, and aes(pch = 20, size =
FIELD)
as_dot_density
cowplot::plot_grid(
plot1,
plot2)
, plot two maps of different types, side by sidesf
is unprojected by using st_is_longlat()
For census geometries, we have FIPS codes (aka GEOIDs)
Area | Structure | Digits |
---|---|---|
State | STATE | 2 |
County | STATE+COUNTY | 2+3=5 |
Tract | STATE+COUNTY+TRACT | 2+3+6=11 |
Block Group | STATE+COUNTY+TRACT+BLOCK GROUP | 2+3+6+1=12 |
Block | STATE+COUNTY+TRACT+BLOCK | 2+3+6+4=15 |
sf
s are special data.frames
or tibbles
, you can join data just as you would with a table.left_join()
, right_join()
, inner_join()
, and outer_join()
all workstates <- counties(state = "AZ") %>%
select(GEOID)
PLACES <- read_csv("data/US/PLACES2023/PLACES2023_county.csv")
left_join(states, PLACES, join_by(GEOID == CountyFIPS))
Simple feature collection with 15 features and 154 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -114.8163 ymin: 31.33234 xmax: -109.0452 ymax: 37.00373
Geodetic CRS: NAD83
First 10 features:
GEOID StateAbbr StateDesc CountyName TotalPopulation ACCESS2_CrudePrev
1 04027 AZ Arizona Yuma 206990 23.6
2 04021 AZ Arizona Pinal 449557 14.1
3 04017 AZ Arizona Navajo 108147 14.6
4 04011 AZ Arizona Greenlee 9404 16.2
5 04013 AZ Arizona Maricopa 4496588 12.7
6 04019 AZ Arizona Pima 1052030 12.9
7 04003 AZ Arizona Cochise 126050 14.5
8 04005 AZ Arizona Coconino 145052 10.6
9 04007 AZ Arizona Gila 53589 12.9
10 04009 AZ Arizona Graham 39050 16.9
ACCESS2_Crude95CI ACCESS2_AdjPrev ACCESS2_Adj95CI ARTHRITIS_CrudePrev
1 (18.6, 29.5) 23.7 (18.8, 29.4) 22.9
2 (11.5, 17.0) 14.5 (11.8, 17.5) 28.1
3 (12.1, 17.7) 15.3 (12.7, 18.5) 29.8
4 (12.9, 19.4) 16.2 (13.0, 19.5) 21.2
5 (10.3, 15.3) 12.9 (10.4, 15.7) 22.9
6 (10.3, 16.1) 13.3 (10.6, 16.5) 26.3
7 (11.6, 17.5) 15.1 (12.1, 18.3) 29.3
8 ( 8.5, 13.3) 10.7 ( 8.7, 13.1) 18.9
9 (10.6, 15.5) 14.1 (11.6, 16.9) 31.6
10 (13.6, 20.3) 16.9 (13.7, 20.3) 24.2
ARTHRITIS_Crude95CI ARTHRITIS_AdjPrev ARTHRITIS_Adj95CI BINGE_CrudePrev
1 (20.0, 26.0) 20.0 (17.3, 22.9) 15.9
2 (25.2, 30.9) 23.5 (21.0, 26.2) 16.3
3 (26.7, 32.8) 24.9 (22.2, 27.6) 14.7
4 (17.8, 24.7) 20.1 (16.8, 23.5) 18.1
5 (20.9, 25.0) 21.1 (19.2, 23.0) 16.7
6 (23.9, 28.6) 22.8 (20.5, 24.9) 15.6
7 (26.2, 32.5) 23.5 (20.8, 26.3) 15.1
8 (16.7, 21.3) 20.0 (17.7, 22.6) 17.6
9 (28.2, 35.1) 22.3 (19.7, 25.0) 14.3
10 (20.7, 27.9) 23.6 (20.1, 27.3) 17.2
BINGE_Crude95CI BINGE_AdjPrev BINGE_Adj95CI BPHIGH_CrudePrev
1 (13.3, 18.7) 17.2 (14.4, 20.3) 33.3
2 (13.8, 18.8) 18.2 (15.5, 21.0) 33.0
3 (12.4, 17.1) 16.6 (14.0, 19.3) 37.3
4 (14.9, 21.7) 18.5 (15.2, 22.2) 27.0
5 (14.8, 18.6) 17.4 (15.5, 19.4) 29.6
6 (13.6, 17.8) 17.1 (15.0, 19.5) 31.7
7 (12.6, 17.8) 17.6 (14.8, 20.8) 36.5
8 (15.0, 20.5) 17.3 (14.8, 20.3) 25.1
9 (12.0, 16.7) 18.7 (15.7, 21.8) 37.0
10 (14.0, 20.6) 17.4 (14.2, 20.9) 30.1
BPHIGH_Crude95CI BPHIGH_AdjPrev BPHIGH_Adj95CI BPMED_CrudePrev
1 (29.9, 36.7) 30.2 (26.9, 33.6) 77.2
2 (29.9, 36.0) 28.5 (25.6, 31.4) 77.0
3 (33.9, 40.5) 32.3 (29.1, 35.3) 77.3
4 (23.3, 30.8) 25.8 (22.2, 29.5) 72.5
5 (27.3, 31.9) 27.7 (25.5, 29.9) 72.9
6 (29.0, 34.3) 28.1 (25.6, 30.5) 77.3
7 (33.2, 39.8) 30.4 (27.3, 33.6) 76.8
8 (22.5, 27.8) 26.6 (23.9, 29.6) 70.0
9 (33.6, 40.7) 27.3 (24.4, 30.3) 82.3
10 (26.3, 34.0) 29.5 (25.7, 33.4) 72.6
BPMED_Crude95CI BPMED_AdjPrev BPMED_Adj95CI CANCER_CrudePrev
1 (74.2, 79.8) 57.3 (52.7, 62.0) 6.9
2 (73.9, 79.7) 55.8 (51.4, 60.0) 7.8
3 (74.4, 80.0) 56.6 (52.3, 60.9) 7.7
4 (68.7, 76.0) 53.8 (48.6, 58.8) 6.1
5 (70.2, 75.3) 53.8 (50.5, 57.1) 6.9
6 (74.7, 79.7) 56.4 (52.7, 60.2) 7.6
7 (73.7, 79.7) 54.1 (49.8, 58.6) 8.1
8 (66.6, 73.1) 52.4 (48.2, 57.0) 5.9
9 (79.3, 84.7) 56.7 (52.0, 61.0) 10.1
10 (68.9, 76.1) 55.3 (50.0, 60.3) 6.2
CANCER_Crude95CI CANCER_AdjPrev CANCER_Adj95CI CASTHMA_CrudePrev
1 ( 6.2, 7.6) 5.5 ( 5.0, 6.1) 9.7
2 ( 7.0, 8.5) 6.1 ( 5.5, 6.7) 10.0
3 ( 6.9, 8.5) 6.1 ( 5.5, 6.7) 12.6
4 ( 5.5, 6.7) 5.7 ( 5.2, 6.3) 9.7
5 ( 6.3, 7.5) 6.2 ( 5.7, 6.8) 9.9
6 ( 6.9, 8.3) 6.1 ( 5.6, 6.7) 10.2
7 ( 7.4, 9.0) 6.0 ( 5.4, 6.6) 10.4
8 ( 5.4, 6.6) 6.3 ( 5.7, 6.9) 11.4
9 ( 9.1, 11.1) 6.4 ( 5.8, 7.1) 10.5
10 ( 5.6, 6.8) 5.9 ( 5.4, 6.6) 10.6
CASTHMA_Crude95CI CASTHMA_AdjPrev CASTHMA_Adj95CI CERVICAL_CrudePrev
1 ( 8.6, 11.0) 9.9 ( 8.7, 11.1) 76.4
2 ( 8.8, 11.2) 10.1 ( 8.9, 11.4) 79.4
3 (11.2, 14.0) 12.8 (11.4, 14.2) 74.7
4 ( 8.5, 11.0) 9.7 ( 8.5, 11.0) 78.5
5 ( 9.0, 11.0) 10.0 ( 9.0, 11.0) 80.6
6 ( 9.1, 11.4) 10.3 ( 9.2, 11.5) 78.1
7 ( 9.2, 11.7) 10.6 ( 9.4, 12.0) 79.0
8 (10.1, 12.8) 11.2 (10.0, 12.6) 75.3
9 ( 9.3, 11.8) 11.0 ( 9.7, 12.3) 77.1
10 ( 9.2, 12.1) 10.6 ( 9.2, 12.1) 75.4
CERVICAL_Crude95CI CERVICAL_AdjPrev CERVICAL_Adj95CI CHD_CrudePrev
1 (73.5, 79.0) 77.7 (75.1, 80.2) 7.6
2 (77.0, 81.3) 79.8 (77.7, 81.7) 7.0
3 (72.5, 76.9) 75.7 (73.5, 77.8) 9.0
4 (76.3, 80.8) 79.2 (77.1, 81.4) 5.5
5 (78.6, 82.6) 81.2 (79.2, 83.1) 5.8
6 (75.9, 80.2) 79.9 (77.9, 81.9) 6.6
7 (76.8, 81.0) 79.8 (77.8, 81.6) 7.9
8 (72.6, 77.7) 79.0 (76.9, 81.1) 5.5
9 (74.6, 79.5) 78.2 (76.2, 80.3) 9.8
10 (73.0, 77.5) 76.4 (74.1, 78.6) 6.4
CHD_Crude95CI CHD_AdjPrev CHD_Adj95CI CHECKUP_CrudePrev CHECKUP_Crude95CI
1 ( 6.7, 8.7) 6.1 ( 5.3, 6.9) 67.6 (63.1, 72.1)
2 ( 6.1, 8.0) 5.4 ( 4.8, 6.2) 71.6 (67.8, 75.2)
3 ( 8.0, 10.2) 7.1 ( 6.3, 8.0) 68.8 (64.8, 72.5)
4 ( 4.8, 6.2) 5.1 ( 4.5, 5.8) 64.1 (58.2, 69.7)
5 ( 5.1, 6.6) 5.2 ( 4.6, 5.9) 69.2 (66.1, 72.0)
6 ( 5.8, 7.5) 5.2 ( 4.6, 5.9) 69.3 (65.9, 72.5)
7 ( 6.9, 9.0) 5.7 ( 5.0, 6.4) 70.2 (66.0, 74.2)
8 ( 4.9, 6.3) 5.8 ( 5.2, 6.6) 63.3 (59.0, 67.6)
9 ( 8.5, 11.1) 6.0 ( 5.3, 6.8) 69.8 (65.6, 73.6)
10 ( 5.7, 7.3) 6.2 ( 5.4, 7.0) 66.8 (61.2, 72.2)
CHECKUP_AdjPrev CHECKUP_Adj95CI CHOLSCREEN_CrudePrev CHOLSCREEN_Crude95CI
1 65.5 (60.7, 70.2) 80.7 (77.5, 83.8)
2 68.8 (64.8, 72.7) 83.3 (80.7, 85.8)
3 65.8 (61.4, 69.8) 79.1 (76.1, 81.9)
4 63.4 (57.4, 69.0) 81.3 (78.0, 84.4)
5 68.0 (64.8, 71.0) 84.0 (81.7, 86.3)
6 66.9 (63.2, 70.4) 83.3 (80.9, 85.6)
7 66.4 (61.9, 70.7) 83.2 (80.4, 85.7)
8 63.8 (59.6, 67.9) 76.4 (73.2, 79.7)
9 63.1 (58.4, 67.4) 84.0 (81.5, 86.3)
10 66.4 (60.7, 71.8) 78.0 (74.3, 81.5)
CHOLSCREEN_AdjPrev CHOLSCREEN_Adj95CI COLON_SCREEN_CrudePrev
1 80.0 (76.5, 83.2) 63.2
2 80.9 (77.9, 83.7) 68.8
3 75.9 (72.7, 79.2) 59.9
4 80.7 (77.3, 84.0) 63.1
5 83.3 (80.8, 85.6) 67.8
6 82.1 (79.6, 84.7) 71.8
7 80.1 (76.9, 83.1) 69.2
8 79.3 (76.4, 82.3) 67.0
9 77.7 (74.3, 80.9) 67.4
10 78.1 (74.3, 81.6) 60.6
COLON_SCREEN_Crude95CI COLON_SCREEN_AdjPrev COLON_SCREEN_Adj95CI
1 (60.5, 65.7) 59.8 (56.7, 62.6)
2 (66.6, 71.1) 64.9 (62.5, 67.4)
3 (57.6, 62.2) 56.1 (53.7, 58.4)
4 (60.7, 65.7) 61.5 (59.1, 64.1)
5 (65.2, 70.2) 66.1 (63.3, 68.6)
6 (69.6, 74.0) 68.4 (66.0, 70.8)
7 (66.6, 71.5) 65.0 (62.4, 67.6)
8 (64.5, 69.3) 64.4 (61.9, 66.7)
9 (64.9, 69.8) 62.2 (59.5, 64.7)
10 (58.1, 63.2) 58.4 (55.8, 61.0)
COPD_CrudePrev COPD_Crude95CI COPD_AdjPrev COPD_Adj95CI COREM_CrudePrev
1 7.4 ( 6.1, 8.7) 6.4 ( 5.4, 7.5) 36.3
2 7.6 ( 6.3, 9.0) 6.3 ( 5.3, 7.5) 44.8
3 10.7 ( 9.1, 12.3) 8.9 ( 7.6, 10.2) 31.0
4 5.5 ( 4.7, 6.4) 5.2 ( 4.4, 6.1) 34.0
5 5.9 ( 4.9, 7.0) 5.4 ( 4.5, 6.4) 45.1
6 6.6 ( 5.4, 7.9) 5.6 ( 4.7, 6.7) 45.3
7 7.9 ( 6.5, 9.4) 6.2 ( 5.2, 7.4) 37.9
8 6.2 ( 5.2, 7.2) 6.4 ( 5.5, 7.5) 40.8
9 10.2 ( 8.5, 12.1) 7.3 ( 6.2, 8.6) 36.2
10 7.3 ( 6.2, 8.5) 7.0 ( 6.0, 8.3) 34.7
COREM_Crude95CI COREM_AdjPrev COREM_Adj95CI COREW_CrudePrev COREW_Crude95CI
1 (30.1, 42.5) 36.2 (30.1, 42.3) 29.0 (24.3, 34.1)
2 (38.3, 51.1) 44.7 (38.3, 50.8) 37.6 (31.7, 43.4)
3 (25.8, 36.0) 31.2 (26.1, 36.4) 22.1 (18.2, 26.0)
4 (27.9, 40.3) 34.8 (28.7, 40.8) 30.0 (24.9, 35.4)
5 (38.4, 51.0) 45.3 (38.8, 51.2) 36.2 (30.3, 41.5)
6 (39.1, 51.2) 45.5 (39.2, 51.3) 38.9 (33.3, 44.2)
7 (32.1, 43.7) 38.0 (32.2, 43.9) 34.8 (29.7, 39.9)
8 (34.6, 46.7) 41.4 (35.6, 47.0) 32.4 (27.4, 37.4)
9 (29.7, 42.9) 36.2 (29.9, 42.6) 29.6 (24.2, 35.4)
10 (28.8, 41.1) 35.0 (29.1, 41.5) 27.4 (22.8, 32.5)
COREW_AdjPrev COREW_Adj95CI CSMOKING_CrudePrev CSMOKING_Crude95CI
1 29.2 (24.3, 34.2) 14.5 (11.9, 17.4)
2 36.7 (31.1, 42.1) 16.6 (13.8, 19.6)
3 21.7 (18.0, 25.5) 20.9 (17.6, 24.1)
4 30.8 (25.7, 36.2) 14.9 (12.1, 17.8)
5 36.0 (30.3, 41.3) 13.8 (11.4, 16.3)
6 38.7 (33.1, 44.0) 14.0 (11.6, 16.6)
7 34.5 (29.5, 39.6) 15.5 (12.7, 18.5)
8 31.9 (27.3, 36.6) 14.5 (12.0, 17.4)
9 29.2 (24.0, 34.8) 18.4 (15.4, 21.9)
10 27.5 (23.0, 32.6) 18.8 (15.6, 22.3)
CSMOKING_AdjPrev CSMOKING_Adj95CI DENTAL_CrudePrev DENTAL_Crude95CI
1 15.7 (12.9, 18.8) 52.3 (48.7, 56.0)
2 17.2 (14.2, 20.2) 53.9 (50.8, 56.9)
3 21.9 (18.5, 25.3) 52.9 (49.8, 55.8)
4 14.9 (12.2, 17.9) 56.7 (53.5, 59.8)
5 14.0 (11.5, 16.6) 61.9 (58.9, 64.9)
6 15.1 (12.4, 17.8) 58.8 (55.8, 61.7)
7 16.5 (13.6, 19.9) 56.2 (53.2, 59.0)
8 16.2 (13.4, 19.5) 64.6 (61.5, 67.5)
9 20.4 (17.1, 24.0) 55.9 (52.4, 59.0)
10 19.3 (16.0, 22.8) 56.8 (53.8, 59.7)
DENTAL_AdjPrev DENTAL_Adj95CI DEPRESSION_CrudePrev DEPRESSION_Crude95CI
1 51.7 (47.8, 55.6) 17.9 (15.0, 21.0)
2 53.2 (50.0, 56.0) 17.9 (15.3, 20.5)
3 52.1 (49.1, 55.2) 20.3 (17.4, 23.3)
4 56.8 (53.5, 59.9) 18.3 (14.9, 21.9)
5 61.7 (58.7, 64.7) 18.7 (16.7, 20.9)
6 58.0 (54.8, 61.0) 21.8 (19.2, 24.4)
7 55.3 (52.2, 58.2) 19.4 (16.6, 22.7)
8 63.8 (60.8, 66.5) 20.5 (17.6, 23.7)
9 54.2 (51.3, 57.2) 18.8 (16.0, 22.0)
10 56.7 (53.7, 59.6) 19.6 (16.1, 23.4)
DEPRESSION_AdjPrev DEPRESSION_Adj95CI DIABETES_CrudePrev DIABETES_Crude95CI
1 18.4 (15.4, 21.6) 14.3 (12.4, 16.3)
2 18.5 (15.8, 21.3) 12.1 (10.6, 13.8)
3 21.1 (18.1, 24.1) 15.4 (13.5, 17.4)
4 18.4 (15.0, 22.1) 10.1 ( 8.6, 11.6)
5 18.9 (16.9, 21.1) 10.4 ( 9.2, 11.5)
6 22.4 (19.7, 25.0) 10.5 ( 9.2, 11.9)
7 20.4 (17.5, 23.8) 12.2 (10.6, 14.0)
8 19.9 (17.2, 23.0) 9.0 ( 7.9, 10.4)
9 20.6 (17.6, 24.0) 14.0 (12.2, 16.0)
10 19.6 (16.1, 23.4) 11.3 ( 9.7, 13.1)
DIABETES_AdjPrev DIABETES_Adj95CI GHLTH_CrudePrev GHLTH_Crude95CI
1 13.0 (11.3, 14.8) 23.2 (20.0, 26.8)
2 10.1 ( 8.9, 11.5) 18.4 (15.7, 21.2)
3 12.8 (11.1, 14.4) 24.2 (21.2, 27.3)
4 9.6 ( 8.2, 11.0) 16.4 (14.1, 18.8)
5 9.5 ( 8.5, 10.6) 15.4 (13.2, 17.6)
6 9.1 ( 7.9, 10.3) 17.5 (15.0, 20.0)
7 9.7 ( 8.4, 11.2) 18.7 (15.9, 21.4)
8 9.5 ( 8.3, 11.0) 14.8 (12.8, 17.2)
9 9.8 ( 8.6, 11.2) 21.5 (18.7, 24.7)
10 10.9 ( 9.3, 12.7) 20.0 (17.2, 22.9)
GHLTH_AdjPrev GHLTH_Adj95CI HIGHCHOL_CrudePrev HIGHCHOL_Crude95CI
1 22.4 (19.3, 25.9) 36.3 (32.6, 40.1)
2 17.2 (14.6, 19.8) 37.7 (34.4, 41.0)
3 22.5 (19.8, 25.3) 36.2 (32.8, 39.4)
4 16.1 (13.8, 18.5) 30.8 (26.6, 35.4)
5 14.8 (12.8, 17.0) 34.5 (32.2, 36.9)
6 16.6 (14.2, 18.9) 35.2 (32.5, 37.9)
7 17.0 (14.5, 19.5) 38.3 (34.9, 42.0)
8 15.5 (13.4, 17.8) 29.4 (26.6, 32.4)
9 18.6 (16.2, 21.5) 36.1 (32.4, 39.7)
10 19.8 (17.1, 22.7) 34.3 (30.0, 38.8)
HIGHCHOL_AdjPrev HIGHCHOL_Adj95CI KIDNEY_CrudePrev KIDNEY_Crude95CI
1 31.2 (27.4, 35.1) 4.2 ( 3.8, 4.6)
2 31.3 (27.9, 34.6) 3.7 ( 3.3, 4.1)
3 28.8 (25.6, 32.0) 4.6 ( 4.2, 5.1)
4 27.5 (23.3, 32.2) 3.2 ( 2.9, 3.5)
5 30.6 (28.2, 33.1) 3.3 ( 3.0, 3.6)
6 29.7 (27.0, 32.5) 3.7 ( 3.3, 4.1)
7 30.6 (27.3, 34.4) 4.0 ( 3.6, 4.4)
8 27.5 (24.4, 30.8) 3.1 ( 2.8, 3.4)
9 25.8 (22.6, 29.0) 4.8 ( 4.4, 5.3)
10 30.8 (26.3, 35.5) 3.5 ( 3.2, 3.8)
KIDNEY_AdjPrev KIDNEY_Adj95CI LPA_CrudePrev LPA_Crude95CI LPA_AdjPrev
1 3.6 ( 3.2, 3.9) 31.2 (27.0, 36.1) 30.5
2 3.1 ( 2.8, 3.3) 25.4 (21.7, 29.3) 24.3
3 3.8 ( 3.5, 4.2) 27.1 (23.2, 31.0) 25.9
4 3.1 ( 2.8, 3.4) 23.3 (19.2, 27.7) 23.1
5 3.0 ( 2.7, 3.3) 22.4 (19.4, 25.5) 22.0
6 3.1 ( 2.8, 3.4) 24.2 (20.8, 27.6) 23.5
7 3.1 ( 2.8, 3.4) 26.7 (22.6, 31.0) 25.2
8 3.3 ( 3.0, 3.6) 17.7 (15.0, 20.8) 18.5
9 3.3 ( 3.0, 3.7) 28.1 (23.9, 32.7) 25.5
10 3.4 ( 3.1, 3.7) 25.7 (21.4, 30.4) 25.6
LPA_Adj95CI MAMMOUSE_CrudePrev MAMMOUSE_Crude95CI MAMMOUSE_AdjPrev
1 (26.1, 35.2) 65.2 (61.4, 68.8) 66.2
2 (20.7, 27.9) 66.1 (62.4, 69.8) 67.1
3 (22.2, 29.6) 57.4 (53.8, 60.9) 57.3
4 (18.8, 27.5) 67.8 (64.1, 71.4) 67.1
5 (19.0, 25.1) 69.0 (65.5, 72.3) 69.1
6 (20.1, 26.8) 70.4 (67.1, 73.6) 70.9
7 (21.2, 29.5) 69.4 (65.9, 72.7) 69.9
8 (15.8, 21.7) 62.5 (59.2, 65.8) 61.8
9 (21.8, 29.7) 61.6 (57.6, 65.3) 62.2
10 (21.2, 30.2) 62.3 (58.8, 66.0) 62.3
MAMMOUSE_Adj95CI MHLTH_CrudePrev MHLTH_Crude95CI MHLTH_AdjPrev MHLTH_Adj95CI
1 (62.3, 69.9) 15.8 (13.6, 18.1) 16.4 (14.2, 18.8)
2 (63.5, 70.5) 15.0 (13.1, 16.9) 16.0 (14.1, 18.0)
3 (53.6, 60.7) 18.7 (16.4, 20.8) 20.1 (17.7, 22.4)
4 (63.3, 71.0) 15.3 (13.2, 17.4) 15.6 (13.5, 17.7)
5 (65.7, 72.5) 16.1 (14.5, 17.8) 16.5 (14.8, 18.3)
6 (67.5, 73.9) 16.2 (14.4, 18.1) 17.0 (15.0, 19.0)
7 (66.3, 73.2) 14.2 (12.4, 16.2) 15.5 (13.6, 17.6)
8 (58.4, 65.2) 18.2 (15.9, 20.8) 17.4 (15.4, 19.7)
9 (58.3, 65.8) 16.1 (14.2, 18.3) 19.0 (16.7, 21.5)
10 (58.6, 65.9) 17.7 (15.3, 20.1) 17.8 (15.3, 20.2)
OBESITY_CrudePrev OBESITY_Crude95CI OBESITY_AdjPrev OBESITY_Adj95CI
1 39.1 (33.6, 44.9) 40.8 (35.1, 46.7)
2 37.2 (32.6, 41.9) 37.5 (32.9, 42.2)
3 38.0 (33.0, 42.6) 38.2 (33.3, 42.9)
4 31.1 (24.2, 38.6) 31.1 (24.3, 38.5)
5 30.8 (27.4, 34.3) 30.9 (27.6, 34.4)
6 31.8 (28.0, 35.7) 32.9 (28.9, 36.9)
7 33.5 (28.8, 38.6) 34.3 (29.4, 39.5)
8 24.6 (20.8, 28.9) 26.4 (22.5, 30.9)
9 35.9 (31.0, 41.0) 36.6 (31.7, 41.7)
10 35.9 (29.2, 43.1) 36.3 (29.6, 43.6)
PHLTH_CrudePrev PHLTH_Crude95CI PHLTH_AdjPrev PHLTH_Adj95CI SLEEP_CrudePrev
1 14.1 (12.1, 16.1) 13.5 (11.6, 15.5) 35.1
2 12.9 (11.2, 14.8) 12.0 (10.4, 13.6) 35.7
3 16.5 (14.5, 18.5) 15.3 (13.4, 17.1) 37.7
4 11.2 ( 9.7, 12.8) 11.0 ( 9.5, 12.4) 33.4
5 10.9 ( 9.5, 12.3) 10.5 ( 9.2, 11.9) 31.7
6 12.1 (10.5, 13.7) 11.4 ( 9.9, 13.0) 32.5
7 13.0 (11.2, 14.8) 11.8 (10.1, 13.4) 33.1
8 11.0 ( 9.6, 12.6) 11.6 (10.2, 13.2) 28.8
9 15.3 (13.3, 17.5) 13.2 (11.5, 15.0) 34.5
10 13.2 (11.5, 15.1) 13.1 (11.4, 14.9) 34.1
SLEEP_Crude95CI SLEEP_AdjPrev SLEEP_Adj95CI STROKE_CrudePrev
1 (33.9, 36.3) 36.6 (35.3, 37.9) 4.0
2 (34.6, 36.8) 37.0 (35.8, 38.0) 3.6
3 (36.5, 38.7) 39.0 (37.8, 40.0) 5.0
4 (32.1, 34.6) 33.6 (32.3, 34.9) 2.9
5 (30.6, 32.7) 32.2 (31.1, 33.3) 2.9
6 (31.4, 33.6) 34.0 (32.7, 35.2) 3.4
7 (31.8, 34.2) 34.7 (33.4, 35.9) 3.9
8 (27.6, 29.9) 29.9 (28.8, 31.0) 3.0
9 (33.3, 35.6) 37.1 (35.9, 38.1) 4.9
10 (33.1, 35.2) 34.6 (33.5, 35.7) 3.4
STROKE_Crude95CI STROKE_AdjPrev STROKE_Adj95CI TEETHLOST_CrudePrev
1 ( 3.5, 4.5) 3.3 ( 2.9, 3.7) 13.7
2 ( 3.2, 4.1) 2.9 ( 2.6, 3.3) 12.8
3 ( 4.4, 5.6) 4.1 ( 3.7, 4.5) 17.4
4 ( 2.6, 3.2) 2.7 ( 2.4, 3.0) 10.7
5 ( 2.6, 3.3) 2.7 ( 2.4, 3.1) 10.3
6 ( 3.0, 3.9) 2.8 ( 2.5, 3.2) 10.6
7 ( 3.4, 4.3) 2.9 ( 2.6, 3.3) 12.9
8 ( 2.7, 3.3) 3.2 ( 2.8, 3.5) 11.5
9 ( 4.3, 5.6) 3.3 ( 2.9, 3.7) 13.4
10 ( 3.1, 3.8) 3.3 ( 3.0, 3.7) 13.3
TEETHLOST_Crude95CI TEETHLOST_AdjPrev TEETHLOST_Adj95CI HEARING_CrudePrev
1 ( 9.9, 17.8) 14.6 (10.7, 18.9) 9.1
2 ( 8.9, 17.5) 13.2 ( 9.3, 18.3) 8.2
3 (13.4, 21.9) 18.2 (13.9, 22.9) 10.5
4 ( 7.7, 13.6) 11.5 ( 8.4, 14.8) 6.7
5 ( 6.7, 14.7) 10.8 ( 7.1, 15.6) 6.6
6 ( 7.1, 14.8) 11.2 ( 7.4, 15.8) 7.7
7 ( 9.2, 17.2) 13.5 ( 9.5, 18.2) 8.7
8 ( 8.2, 15.1) 12.0 ( 8.6, 15.7) 6.8
9 ( 9.4, 18.2) 14.0 ( 9.7, 19.2) 11.3
10 (10.0, 17.1) 14.3 (10.5, 18.6) 7.8
HEARING_Crude95CI HEARING_AdjPrev HEARING_Adj95CI VISION_CrudePrev
1 ( 8.1, 10.2) 7.4 ( 6.6, 8.3) 8.2
2 ( 7.2, 9.2) 6.7 ( 6.0, 7.5) 5.4
3 ( 9.4, 11.7) 8.9 ( 7.9, 9.8) 8.6
4 ( 5.9, 7.5) 6.4 ( 5.7, 7.1) 5.2
5 ( 5.8, 7.3) 6.1 ( 5.4, 6.8) 4.7
6 ( 6.8, 8.6) 6.4 ( 5.7, 7.1) 5.5
7 ( 7.7, 9.8) 6.7 ( 5.9, 7.5) 6.0
8 ( 6.0, 7.6) 7.2 ( 6.4, 8.0) 5.1
9 (10.0, 12.7) 7.7 ( 6.9, 8.7) 7.1
10 ( 6.9, 8.8) 7.6 ( 6.7, 8.5) 6.6
VISION_Crude95CI VISION_AdjPrev VISION_Adj95CI COGNITION_CrudePrev
1 ( 7.1, 9.5) 7.8 ( 6.7, 9.0) 16.3
2 ( 4.7, 6.3) 5.1 ( 4.4, 5.9) 13.8
3 ( 7.5, 9.7) 8.0 ( 7.0, 9.0) 18.4
4 ( 4.5, 5.9) 5.1 ( 4.5, 5.8) 13.5
5 ( 4.1, 5.3) 4.5 ( 3.9, 5.2) 13.2
6 ( 4.7, 6.3) 5.1 ( 4.4, 5.9) 13.2
7 ( 5.1, 6.9) 5.4 ( 4.7, 6.2) 13.8
8 ( 4.4, 5.8) 5.3 ( 4.6, 6.0) 14.8
9 ( 6.1, 8.1) 6.1 ( 5.3, 7.0) 15.1
10 ( 5.8, 7.5) 6.5 ( 5.7, 7.4) 16.6
COGNITION_Crude95CI COGNITION_AdjPrev COGNITION_Adj95CI MOBILITY_CrudePrev
1 (13.9, 19.0) 16.5 (14.1, 19.2) 16.9
2 (11.8, 15.8) 14.4 (12.3, 16.5) 14.9
3 (16.0, 20.7) 19.2 (16.7, 21.6) 20.1
4 (11.5, 15.5) 13.7 (11.6, 15.7) 12.2
5 (11.5, 15.1) 13.4 (11.6, 15.4) 12.7
6 (11.4, 15.2) 13.5 (11.6, 15.6) 14.1
7 (11.9, 16.0) 14.5 (12.5, 16.7) 15.7
8 (12.5, 17.3) 14.2 (12.3, 16.4) 11.0
9 (13.0, 17.5) 16.7 (14.6, 19.3) 20.7
10 (14.2, 19.0) 16.6 (14.2, 19.0) 14.9
MOBILITY_Crude95CI MOBILITY_AdjPrev MOBILITY_Adj95CI SELFCARE_CrudePrev
1 (14.6, 19.3) 15.0 (12.8, 17.2) 5.5
2 (12.8, 17.2) 12.6 (10.9, 14.6) 4.0
3 (17.7, 22.5) 17.1 (15.0, 19.2) 6.3
4 (10.5, 14.0) 11.7 (10.0, 13.4) 3.6
5 (11.0, 14.5) 11.8 (10.2, 13.5) 3.4
6 (12.1, 16.1) 12.2 (10.5, 14.0) 3.9
7 (13.5, 18.1) 12.6 (10.8, 14.5) 4.4
8 ( 9.6, 12.7) 11.8 (10.3, 13.5) 3.5
9 (17.9, 23.8) 15.0 (13.0, 17.2) 5.5
10 (12.8, 17.0) 14.5 (12.5, 16.7) 4.6
SELFCARE_Crude95CI SELFCARE_AdjPrev SELFCARE_Adj95CI INDEPLIVE_CrudePrev
1 ( 4.7, 6.3) 5.2 ( 4.5, 6.0) 9.6
2 ( 3.5, 4.6) 3.7 ( 3.2, 4.2) 7.8
3 ( 5.5, 7.2) 5.7 ( 5.0, 6.4) 11.7
4 ( 3.2, 4.1) 3.5 ( 3.1, 4.0) 6.9
5 ( 2.9, 4.0) 3.3 ( 2.8, 3.8) 6.8
6 ( 3.4, 4.5) 3.7 ( 3.1, 4.2) 7.6
7 ( 3.8, 5.1) 3.9 ( 3.4, 4.4) 8.0
8 ( 3.1, 4.0) 3.9 ( 3.4, 4.4) 7.9
9 ( 4.8, 6.4) 4.5 ( 3.9, 5.1) 9.9
10 ( 4.1, 5.3) 4.6 ( 4.1, 5.2) 9.1
INDEPLIVE_Crude95CI INDEPLIVE_AdjPrev INDEPLIVE_Adj95CI DISABILITY_CrudePrev
1 ( 8.3, 11.1) 9.2 ( 7.9, 10.6) 33.3
2 ( 6.6, 8.9) 7.5 ( 6.4, 8.7) 31.0
3 (10.2, 13.3) 11.4 (10.0, 12.9) 37.8
4 ( 6.0, 7.9) 6.9 ( 6.0, 7.9) 27.6
5 ( 5.9, 7.9) 6.7 ( 5.8, 7.8) 28.5
6 ( 6.6, 8.8) 7.4 ( 6.3, 8.4) 30.1
7 ( 6.9, 9.2) 7.6 ( 6.6, 8.8) 31.8
8 ( 6.8, 9.1) 8.0 ( 6.9, 9.2) 27.1
9 ( 8.5, 11.4) 9.2 ( 8.0, 10.6) 38.7
10 ( 7.9, 10.4) 9.0 ( 7.9, 10.3) 33.4
DISABILITY_Crude95CI DISABILITY_AdjPrev DISABILITY_Adj95CI
1 (28.9, 37.6) 30.9 (26.7, 35.1)
2 (27.0, 34.7) 28.8 (25.1, 32.4)
3 (33.8, 41.6) 35.5 (31.7, 39.4)
4 (23.7, 31.6) 27.1 (23.1, 31.1)
5 (25.5, 31.5) 27.6 (24.7, 30.6)
6 (26.6, 33.6) 27.9 (24.7, 31.3)
7 (28.2, 35.9) 28.7 (25.2, 32.6)
8 (23.7, 30.9) 27.2 (24.1, 30.9)
9 (34.6, 43.1) 33.9 (30.0, 37.8)
10 (29.1, 38.0) 32.9 (28.6, 37.5)
Geolocation geometry
1 POINT (-113.910905 32.7739424) MULTIPOLYGON (((-114.8141 3...
2 POINT (-111.3663396 32.9185209) MULTIPOLYGON (((-111.2669 3...
3 POINT (-110.3210248 35.3907852) MULTIPOLYGON (((-110.0007 3...
4 POINT (-109.2423231 33.2388723) MULTIPOLYGON (((-109.4958 3...
5 POINT (-112.4989296 33.3451756) MULTIPOLYGON (((-111.8931 3...
6 POINT (-111.7836574 32.128038) MULTIPOLYGON (((-111.0388 3...
7 POINT (-109.7751627 31.8401287) MULTIPOLYGON (((-110.4523 3...
8 POINT (-111.7737277 35.8296919) MULTIPOLYGON (((-112.6604 3...
9 POINT (-110.8118696 33.7896177) MULTIPOLYGON (((-111.7207 3...
10 POINT (-109.8783103 32.9318277) MULTIPOLYGON (((-110.4494 3...
sf
objects.sf
objects. This process is called geocoding.st_as_sf(
df, coords = c("
lon", "
lat"), crs =
crs)
Simple feature collection with 85395 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -175.86 ymin: 17.90163 xmax: -65.30188 ymax: 71.29667
Geodetic CRS: WGS 84
# A tibble: 85,395 × 5
STATEFP COUNTYFP TRACTCE POPULATION geometry
* <chr> <chr> <chr> <dbl> <POINT [°]>
1 01 001 020100 1775 (-86.4866 32.47682)
2 01 001 020200 2055 (-86.47259 32.4719)
3 01 001 020300 3216 (-86.45925 32.47458)
4 01 001 020400 4246 (-86.44299 32.46866)
5 01 001 020501 4322 (-86.42442 32.45153)
6 01 001 020502 3284 (-86.41773 32.46832)
7 01 001 020503 3616 (-86.42498 32.47547)
8 01 001 020600 3729 (-86.47658 32.44332)
9 01 001 020700 3409 (-86.44874 32.44379)
10 01 001 020801 3143 (-86.52377 32.44077)
# ℹ 85,385 more rows
st_intersects()
st_contains()
st_is_within_distance()
sf
objectst_join(
sf1,
sf2, join =
One of above)
Simple feature collection with 157 features and 60 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -114.6334 ymin: 31.341 xmax: -109.04 ymax: 36.91705
Geodetic CRS: WGS 84
First 10 features:
OBJECTID OBJECTID_1 RUN_DATE source BUREAU FACID
1 1 2822 2024-05-06 ASPEN MED AZTH00002
2 2 2823 2024-05-06 ASPEN MED AZTH00003
3 3 2824 2024-05-06 ASPEN MED AZTH00004
4 4 3774 2024-05-06 ASPEN MED BH7347
5 5 4893 2024-05-06 ASPEN MED MED0198
6 6 4894 2024-05-06 ASPEN MED MED0201
7 7 4895 2024-05-06 ASPEN MED MED0203
8 8 4896 2024-05-06 ASPEN MED MED0204
9 9 4901 2024-05-06 ASPEN MED MED0209
10 10 4902 2024-05-06 ASPEN MED MED0211
FACILITY_N LICENSE_NU LICENSE_EF
1 BANNER- UNIVERSITY MEDICAL CENTER PHOENIX <NA> <NA>
2 BANNER UNIVERSITY MEDICAL CTR AT THE AZ HEALTH SC <NA> <NA>
3 MAYO CLINIC HOSPITAL <NA> <NA>
4 VIA LINDA BEHAVIORAL HOSPITAL SH11520 2023-03-01
5 CANYON VISTA MEDICAL CENTER H7130 2020-02-18
6 FLAGSTAFF MEDICAL CENTER H0169 2020-12-01
7 PAGE HOSPITAL H0086 2022-01-06
8 BANNER PAYSON MEDICAL CENTER H7250 2021-10-15
9 ABRAZO ARROWHEAD CAMPUS H0175 2021-12-01
10 BANNER BEHAVIORAL HEALTH HOSPITAL SH0147 2021-02-01
LICENSE_EX MEDICARE_I MEDICARE_1 MEDICARE_2 TELEPHONE FACILITY_T
1 <NA> 039802 <NA> <NA> (602)239-2716 NA
2 <NA> 039800 <NA> <NA> (520)694-0111 NA
3 <NA> 039801 <NA> <NA> (480)342-1900 NA
4 2025-02-28 034040 <NA> <NA> (480)476-7000 12
5 2024-12-27 030043 <NA> <NA> (520)263-2220 11
6 2024-11-30 030023 <NA> <NA> (928)779-3366 11
7 2024-12-28 031304 <NA> <NA> (928)645-2424 14
8 2024-12-24 031318 <NA> <NA> (928)471-3222 14
9 2024-12-27 030094 <NA> <NA> (623)561-1000 11
10 2024-12-24 034004 <NA> <NA> (480)448-7500 12
TYPE SUBTYPE CATEGORY ICON_CATEG
1 HOSPITAL TRANSPLANT HOSPITAL HOSPITAL
2 HOSPITAL TRANSPLANT HOSPITAL HOSPITAL
3 HOSPITAL TRANSPLANT HOSPITAL HOSPITAL
4 HOSPITAL PSYCHIATRIC HOSPITAL HOSPITAL
5 HOSPITAL SHORT TERM HOSPITAL HOSPITAL
6 HOSPITAL SHORT TERM HOSPITAL HOSPITAL
7 HOSPITAL CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL
8 HOSPITAL CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL
9 HOSPITAL SHORT TERM HOSPITAL HOSPITAL
10 HOSPITAL PSYCHIATRIC HOSPITAL HOSPITAL
MEDICARE_T LICENSE_TY LICENSE_SU
1 HOSPITAL - TRANSPLANT HOSPITAL FEDERAL ONLY <NA>
2 HOSPITAL - TRANSPLANT HOSPITAL FEDERAL ONLY <NA>
3 HOSPITAL - TRANSPLANT HOSPITAL FEDERAL ONLY <NA>
4 HOSPITAL - PSYCHIATRIC HOSPITAL HOSPITAL - SPECIAL
5 HOSPITAL - SHORT TERM HOSPITAL HOSPITAL - GENERAL
6 HOSPITAL - SHORT TERM HOSPITAL HOSPITAL - GENERAL
7 HOSPITAL - CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL - GENERAL
8 HOSPITAL - CRITICAL ACCESS HOSPITALS HOSPITAL HOSPITAL - GENERAL
9 HOSPITAL - SHORT TERM HOSPITAL HOSPITAL - GENERAL
10 HOSPITAL - PSYCHIATRIC HOSPITAL HOSPITAL - SPECIAL
CAPACITY ADDRESS CITY ZIP COUNTY OPERATION_
1 0 1441 N 12TH PHOENIX 85006 MARICOPA ACTIVE
2 0 1501 NORTH CAMPBELL AVENUE TUCSON 85724 PIMA ACTIVE
3 0 5777 EAST MAYO BOULEVARD PHOENIX 85054 MARICOPA ACTIVE
4 120 9160 EAST HORSESHOE RD SCOTTSDALE 85258 MARICOPA ACTIVE
5 100 5700 EAST HIGHWAY 90 SIERRA VISTA 85635 COCHISE ACTIVE
6 268 1200 NORTH BEAVER STREET FLAGSTAFF 86001 COCONINO ACTIVE
7 25 501 NORTH NAVAJO DRIVE PAGE 86040 COCONINO ACTIVE
8 25 807 SOUTH PONDEROSA DRIVE PAYSON 85541 GILA ACTIVE
9 229 18701 NORTH 67TH AVENUE GLENDALE 85308 MARICOPA ACTIVE
10 156 7575 EAST EARLL DRIVE SCOTTSDALE 85251 MARICOPA ACTIVE
X_Is_Publi HOSPITAL_G KeyID ADHSCODE N_AddressT N_LocatorT
1 Yes <NA> AZTH00002 A AS0 CENTRUS-TOMTOM
2 Yes <NA> AZTH00003 A AS0 CENTRUS-TOMTOM
3 Yes <NA> AZTH00004 A AS0 CENTRUS-TOMTOM
4 Yes <NA> BH7347 A AS0 CENTRUS-TOMTOM
5 Yes <NA> MED0198 A AS0 CENTRUS-TOMTOM
6 Yes <NA> MED0201 A AS0 CENTRUS-TOMTOM
7 Yes <NA> MED0203 A AS0 CENTRUS-TOMTOM
8 Yes <NA> MED0204 A AS0 CENTRUS-TOMTOM
9 Yes <NA> MED0209 A AS0 CENTRUS-TOMTOM
10 Yes <NA> MED0211 A AS0 CENTRUS-TOMTOM
N_ADDRESS N_ADDR2 N_CITY N_COUNTY
1 1441 N 12TH ST <NA> PHOENIX MARICOPA COUNTY
2 1501 N CAMPBELL AVE <NA> TUCSON PIMA COUNTY
3 5777 E MAYO BLVD <NA> PHOENIX MARICOPA COUNTY
4 9160 E HORSESHOE RD <NA> SCOTTSDALE MARICOPA COUNTY
5 5700 E HIGHWAY 90 <NA> SIERRA VISTA COCHISE COUNTY
6 1200 N BEAVER ST <NA> FLAGSTAFF COCONINO COUNTY
7 501 N NAVAJO DR <NA> PAGE COCONINO COUNTY
8 807 S PONDEROSA ST <NA> PAYSON GILA COUNTY
9 18701 N 67TH AVE <NA> GLENDALE MARICOPA COUNTY
10 7575 E EARLL DR <NA> SCOTTSDALE MARICOPA COUNTY
N_FULLADDR N_LAT N_LON N_STATE
1 1441 N 12TH ST , PHOENIX, AZ 85006-2837 33.46410 -112.0562 AZ
2 1501 N CAMPBELL AVE , TUCSON, AZ 85724-0001 32.24080 -110.9443 AZ
3 5777 E MAYO BLVD , PHOENIX, AZ 85054-4502 33.66316 -111.9557 AZ
4 9160 E HORSESHOE RD , SCOTTSDALE, AZ 85258-4666 33.56670 -111.8840 AZ
5 5700 E HIGHWAY 90 , SIERRA VISTA, AZ 85635-9110 31.55449 -110.2319 AZ
6 1200 N BEAVER ST , FLAGSTAFF, AZ 86001-3118 35.20949 -111.6447 AZ
7 501 N NAVAJO DR , PAGE, AZ 86040-0959 36.91705 -111.4634 AZ
8 807 S PONDEROSA ST , PAYSON, AZ 85541-5542 34.23130 -111.3212 AZ
9 18701 N 67TH AVE , GLENDALE, AZ 85308-7100 33.65504 -112.2027 AZ
10 7575 E EARLL DR , SCOTTSDALE, AZ 85251-6915 33.48385 -111.9183 AZ
N_ZIP N_ZIP4 N_BLOCK RESERVATIO RESERV_ID R_METHOD
1 85006 2837 4.013113e+13 <NA> <NA> <NA>
2 85724 1 4.019002e+13 <NA> <NA> <NA>
3 85054 4502 4.013615e+13 <NA> <NA> <NA>
4 85258 4666 4.013941e+13 Salt River Reservation 3340F Coordinates
5 85635 9110 4.003002e+13 <NA> <NA> <NA>
6 86001 3118 4.005000e+13 <NA> <NA> <NA>
7 86040 959 4.005002e+13 <NA> <NA> <NA>
8 85541 5542 4.007001e+13 <NA> <NA> <NA>
9 85308 7100 4.013616e+13 <NA> <NA> <NA>
10 85251 6915 4.013218e+13 <NA> <NA> <NA>
oPCA oPCA_ID P_Method P_Reliable
1 CENTRAL CITY VILLAGE 39 Coordinates <NA>
2 TUCSON CENTRAL 107 Coordinates <NA>
3 DESERT VIEW VILLAGE 30 Coordinates <NA>
4 SALT RIVER PIMA-MARICOPA INDIAN COMMUNITY 62 Coordinates <NA>
5 SIERRA VISTA 123 Coordinates <NA>
6 FLAGSTAFF 10 Coordinates <NA>
7 PAGE 7 Coordinates <NA>
8 PAYSON 23 Coordinates <NA>
9 GLENDALE NORTH 56 Coordinates <NA>
10 SCOTTSDALE SOUTH 45 Coordinates <NA>
SOURCE_VW CASELOAD CSA_ID
1 Tableau.vw_licensing_facilities <NA> 47
2 Tableau.vw_licensing_facilities <NA> 121
3 Tableau.vw_licensing_facilities <NA> 37
4 Tableau.vw_licensing_facilities <NA> 72
5 Tableau.vw_licensing_facilities <NA> 135
6 Tableau.vw_licensing_facilities <NA> 11
7 Tableau.vw_licensing_facilities <NA> 8
8 Tableau.vw_licensing_facilities <NA> 30
9 Tableau.vw_licensing_facilities <NA> 65
10 Tableau.vw_licensing_facilities <NA> 54
CSA_NAME AREA_SQMILE POP2020 Shape__Area
1 Phoenix - Central City 26.06187 62645 726562975
2 Tucson - North 31.92997 124515 890156111
3 Phoenix - Desert View 62.87998 61105 1752992698
4 Salt River Pima-Maricopa Indian Community 84.99103 6334 2369413211
5 Sierra Vista 708.44630 56911 19750344116
6 Flagstaff 4579.81300 88600 127677843904
7 Page 3160.98200 9375 88123101547
8 Payson 2106.17700 28134 58716828639
9 Glendale - North 26.11177 90431 727954288
10 Scottsdale - South 16.24433 84604 452865825
Shape__Length geometry
1 147316.9 POINT (-112.0562 33.46411)
2 174100.1 POINT (-110.9443 32.24081)
3 222767.7 POINT (-111.9557 33.66317)
4 259861.9 POINT (-111.884 33.56671)
5 905907.7 POINT (-110.2319 31.5545)
6 3525132.7 POINT (-111.6447 35.20949)
7 2193590.5 POINT (-111.4634 36.91705)
8 1943665.6 POINT (-111.3212 34.2313)
9 150309.6 POINT (-112.2027 33.65505)
10 108575.4 POINT (-111.9183 33.48386)
st_join(AZ_hosp, AZ_statAreas) %>%
group_by(CSA_ID) %>%
summarize(count = n(), POP2020 = first(POP2020)) %>%
mutate(countPerHunThoP = 100000 * count / POP2020)
Simple feature collection with 81 features and 4 fields
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: -114.6334 ymin: 31.341 xmax: -109.04 ymax: 36.91705
Geodetic CRS: WGS 84
# A tibble: 81 × 5
CSA_ID count POP2020 geometry countPerHunThoP
* <int> <int> <int> <GEOMETRY [°]> <dbl>
1 4 2 54625 MULTIPOINT ((-114.0359 35.21854), (-113… 3.66
2 5 2 41406 MULTIPOINT ((-114.5982 35.10075), (-114… 4.83
3 6 1 25119 POINT (-114.5978 35.00245) 3.98
4 7 1 60701 POINT (-114.3387 34.47989) 1.65
5 8 1 9375 POINT (-111.4634 36.91705) 10.7
6 9 2 90302 MULTIPOINT ((-109.59 36.14001), (-109.5… 2.21
7 11 3 88600 MULTIPOINT ((-111.6062 35.20678), (-111… 3.39
8 12 2 10321 MULTIPOINT ((-110.42 35.80001), (-111.2… 19.4
9 15 1 16962 POINT (-110.6919 35.03552) 5.90
10 17 2 29859 MULTIPOINT ((-109.9751 34.16484), (-110… 6.70
# ℹ 71 more rows
st_buffer(
sf1,
distance )
st_distance(
sf1,
sf2, by_element =
TRUE/FALSE )
read_csv("data/US/COP2020/COP2020_tract.txt") %>%
filter(STATEFP == "04") %>%
st_as_sf(coords = c("LONGITUDE", "LATITUDE"), crs = 4326) %>%
st_distance(., AZ_hosp) %>%
head()
Units: [m]
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 418834.8 513413.9 394927.7 401342.2 580851.5 237198.5 144967.4 312153.8
[2,] 442157.8 524284.0 418543.8 423948.9 585561.1 269397.1 188378.8 333760.8
[3,] 374473.8 429418.4 352467.7 355090.9 481961.5 240075.2 247279.7 266714.7
[4,] 411224.3 484801.1 388013.6 392518.2 543509.6 249879.8 203963.1 302232.5
[5,] 375571.1 454554.7 352226.4 357013.0 517079.5 213458.0 185629.9 266685.4
[6,] 378943.7 455596.3 355691.1 360286.5 517005.9 218844.0 191983.3 269977.8
[,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
[1,] 407064.0 411000.9 418508.9 415022.4 418765.5 401926.9 419477.3 419011.2
[2,] 432334.1 433450.8 440203.7 441386.5 442107.7 426685.4 442646.6 441275.4
[3,] 370145.0 363863.7 368538.6 381909.9 374474.5 363319.9 374554.8 370965.1
[4,] 403209.3 401830.4 407926.3 413249.6 411191.1 397124.0 411578.4 409455.4
[5,] 367076.2 366395.4 372733.7 376925.1 375532.7 361087.8 375967.3 374094.9
[6,] 370812.4 369624.9 375816.6 380840.0 378908.8 364742.6 379311.5 377278.7
[,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
[1,] 410801.4 415688.1 462340.2 479213.2 414507.0 515745.6 511192.3 513245.8
[2,] 433302.9 441213.3 503204.4 517404.3 455078.6 527002.8 521601.9 524119.3
[3,] 363849.6 379399.9 500799.9 498919.0 452229.4 432706.6 426063.2 429260.9
[4,] 401726.5 412271.1 496611.6 504673.4 447990.4 487701.3 481906.5 484638.3
[5,] 366276.3 376103.3 462953.0 469183.9 414255.2 457252.1 451906.3 454389.7
[6,] 369515.4 379870.1 469230.7 475017.2 420525.0 458361.3 452867.2 455432.0
[,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32]
[1,] 464652.3 299981.1 510752.5 418248.8 505678.9 420970.6 414545.3 511192.3
[2,] 483027.8 330919.8 521202.6 441809.4 517218.3 441358.9 439951.5 521601.9
[3,] 402650.7 291501.4 425730.9 374746.0 423505.7 366566.1 377856.1 426063.2
[4,] 448060.4 308804.8 481527.2 411083.4 478080.6 408051.8 410905.1 481906.5
[5,] 414154.5 272085.1 451503.5 375367.4 447454.6 373286.0 374759.0 451906.3
[6,] 416581.9 277040.4 452471.9 378783.0 448620.7 376131.0 378506.6 452867.2
[,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40]
[1,] 416609.9 418248.8 466325.2 512493.3 418765.5 506313.1 418248.8 416609.9
[2,] 439907.0 441809.4 507210.1 522549.7 442107.7 517823.8 441809.4 439907.0
[3,] 372232.9 374746.0 504835.5 426465.1 374474.5 424056.7 374746.0 372232.9
[4,] 408964.5 411083.4 500652.9 482687.9 411191.1 478670.3 411083.4 408964.5
[5,] 373312.7 375367.4 466999.6 452886.9 375532.7 448061.2 375367.4 373312.7
[6,] 376684.1 378783.0 473277.8 453784.1 378908.8 449221.8 378783.0 376684.1
[,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48]
[1,] 422789.4 414206.8 410709.5 432473.6 520064.2 493167.6 321776.9 134282.591
[2,] 446152.4 434813.9 433243.2 457741.8 530705.7 504484.5 326473.0 116905.672
[3,] 378436.9 360737.2 363872.1 394660.3 435404.2 410601.2 226480.9 5686.274
[4,] 415229.9 401710.3 401694.0 428458.7 491098.6 465269.2 285019.9 73038.156
[5,] 379575.6 366851.1 366234.5 392374.1 460993.8 434727.7 257715.0 69223.198
[6,] 382949.1 369745.5 369479.5 396069.5 461990.6 435862.7 257770.8 63856.791
[,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56]
[1,] 142571.2 446391.6 390185.8 322428.9 583224.2 340912.5 520338.0 416255.0
[2,] 181868.2 465793.9 398746.0 326998.0 588748.4 373017.3 531261.2 439796.5
[3,] 195526.5 388069.2 302508.2 226812.7 486042.8 334930.2 436386.8 372752.7
[4,] 176487.0 431630.6 358570.5 285495.4 546961.8 351878.2 491787.4 409066.0
[5,] 145427.5 397285.5 329207.6 258280.3 520015.9 315196.5 461529.8 373350.1
[6,] 152056.0 399918.7 329926.1 258310.8 520083.6 320236.9 462576.6 376765.5
[,57] [,58] [,59] [,60] [,61] [,62] [,63] [,64]
[1,] 595016.7 417683.1 329530.0 612145.0 424412.6 408594.4 289743.3 416519.3
[2,] 597203.6 443984.0 361276.9 621512.0 444759.8 428336.3 295120.2 439810.7
[3,] 490990.8 384234.7 322617.8 523438.0 369767.5 352474.2 197262.5 372125.4
[4,] 554410.4 415768.8 339804.8 581161.2 411403.2 394614.2 254098.7 408863.9
[5,] 529681.0 379459.5 303107.3 551961.2 376661.6 360032.2 226102.4 373213.4
[6,] 529167.0 383359.1 308115.6 552689.7 379494.1 362779.4 226331.3 376583.9
[,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72]
[1,] 416952.9 410333.6 402240.8 421187.3 422655.2 510575.8 431874.4 415338.0
[2,] 439817.6 450830.6 424863.9 446330.3 443911.8 520959.6 455552.3 441410.1
[3,] 371051.3 447644.8 356013.9 383292.5 371076.7 425390.1 388338.9 381109.3
[4,] 408507.2 443578.7 393441.2 416998.5 411264.4 481253.6 424849.0 412989.1
[5,] 372972.1 409796.0 357933.9 380919.3 376219.5 451266.1 389134.0 376716.8
[6,] 376266.1 416058.1 361208.9 384610.0 379217.6 452222.7 392549.6 380580.1
[,73] [,74] [,75] [,76] [,77] [,78] [,79] [,80]
[1,] 512021.2 330364.5 514631.2 415217.7 437196.7 120824.18 297467.6 535802.3
[2,] 522238.6 362064.6 525092.4 441316.0 454635.9 119074.53 293415.5 541438.3
[3,] 426400.2 323193.1 429587.1 381092.2 372992.6 41594.13 184465.8 439221.1
[4,] 482451.9 340524.7 485413.1 412920.9 419153.1 77925.82 249728.6 499755.5
[5,] 452560.2 303823.1 455393.4 376643.7 385539.7 52026.30 228976.5 472644.2
[6,] 453486.3 308821.6 456361.4 380511.8 387831.3 50845.01 227339.2 472746.4
[,81] [,82] [,83] [,84] [,85] [,86] [,87] [,88]
[1,] 500823.0 383997.5 438936.7 497415.3 418836.9 409309.1 418088.5 399306.2
[2,] 502990.0 396960.4 440393.2 534072.7 441901.9 433241.0 441175.8 421915.0
[3,] 397316.3 308182.8 334549.1 507782.8 373570.8 367440.2 372925.4 353137.4
[4,] 460291.6 359005.2 397597.2 518476.8 410749.1 402893.0 410046.1 390499.2
[5,] 435402.3 327216.3 373051.5 482381.6 375164.3 367063.6 374453.6 354987.7
[6,] 434901.8 328759.7 372438.3 487944.9 378491.0 370559.6 377785.4 358265.2
[,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96]
[1,] 414984.7 399873.8 410174.4 409270.2 411605.2 285790.5 207238.4 506081.8
[2,] 438915.5 422572.2 435056.1 429662.5 436629.5 291830.0 227426.2 517630.0
[3,] 372911.1 353995.5 371711.8 355254.0 373613.4 195156.3 167447.9 423925.8
[4,] 408531.5 391227.4 405553.4 396423.4 407248.3 251102.9 196417.9 478495.7
[5,] 372715.4 355692.9 369508.1 361620.4 371175.3 222637.9 160536.8 447866.1
[6,] 376201.9 358985.3 373170.6 364483.9 374860.6 223005.0 164053.8 449033.5
[,97] [,98] [,99] [,100] [,101] [,102] [,103] [,104]
[1,] 513523.9 342156.5 630527.1 506063.7 515536.1 429635.8 235074.2 520620.7
[2,] 523714.5 374491.3 662528.0 517583.5 525028.5 454531.4 266958.4 530025.2
[3,] 427816.9 337143.1 615179.9 423834.3 428079.4 390549.9 236804.3 432888.5
[4,] 483912.1 353634.9 639648.8 478435.1 484905.7 424922.6 247084.4 489852.5
[5,] 454039.1 316971.8 602897.2 447820.6 455429.8 388913.1 210619.2 460439.5
[6,] 454959.5 322047.3 607561.0 448982.9 456224.8 392547.2 215966.9 461215.9
[,105] [,106] [,107] [,108] [,109] [,110] [,111] [,112]
[1,] 394927.7 414129.8 427831.6 399012.4 409191.3 406292.6 630337.0 416952.9
[2,] 418543.8 438081.6 449113.9 422811.4 429565.2 436473.2 662329.1 439817.6
[3,] 352467.7 372160.9 376178.3 357048.5 355117.3 388791.4 614954.1 371051.3
[4,] 388013.6 407721.1 416458.6 392413.4 396312.8 412440.1 639439.6 408507.2
[5,] 352226.4 371898.0 381419.9 356591.6 361515.6 375700.7 602688.1 372972.1
[6,] 355691.1 375389.6 384415.0 360081.5 364375.9 380290.2 607350.4 376266.1
[,113] [,114] [,115] [,116] [,117] [,118] [,119] [,120]
[1,] 426473.8 119382.28 497802.6 570913.2 415236.0 425087.9 518777.5 420279.0
[2,] 451212.1 144098.59 534546.1 587439.6 438661.8 450709.2 528970.1 440120.2
[3,] 386919.4 120154.44 508633.9 501482.2 371359.9 388828.4 433009.3 364111.0
[4,] 421478.8 121079.19 519094.7 550920.4 407837.8 421799.2 489156.7 406407.4
[5,] 385498.1 84616.82 483024.9 518028.2 372149.2 385629.4 459295.9 371827.8
[6,] 389109.3 90076.99 488602.1 520034.5 375545.7 389398.1 460213.7 374575.4
[,121] [,122] [,123] [,124] [,125] [,126] [,127] [,128]
[1,] 604048.2 340848.2 73500.537 470984.0 412865.9 413454.5 392788.6 413137.1
[2,] 636008.0 372959.5 73190.757 511545.7 434334.9 438259.8 416196.4 433653.7
[3,] 588973.4 334898.9 60132.588 506856.5 362318.3 374594.0 349671.3 359403.6
[4,] 613160.8 351829.3 38508.305 504107.5 401910.1 408666.6 385500.3 400487.1
[5,] 576408.4 315148.2 4054.704 470144.3 366770.9 372644.7 349759.7 365654.6
[6,] 581083.7 320189.9 6363.175 476367.9 369822.1 376288.3 353191.1 368534.4
[,129] [,130] [,131] [,132] [,133] [,134] [,135] [,136]
[1,] 341697.1 413279.4 423761.5 414828.6 424995.4 434088.0 418672.9 406570.3
[2,] 373959.9 433703.6 445789.8 437888.4 443584.3 459372.5 441767.4 425944.4
[3,] 336383.3 359236.7 374754.7 369680.0 364687.6 396282.4 373515.1 349327.7
[4,] 353015.2 400466.0 413751.0 406754.9 408945.0 430095.2 410640.3 391964.1
[5,] 316346.2 365664.8 378472.3 371161.6 374838.6 394010.2 375047.3 357506.0
[6,] 321410.8 368527.7 381606.7 374493.7 377353.7 397706.1 378379.4 360189.9
[,137] [,138] [,139] [,140] [,141] [,142] [,143] [,144]
[1,] 400647.9 429297.9 426780.5 413498.4 236357.9 419164.4 391066.6 428519.3
[2,] 425448.4 454154.7 448038.8 433230.7 268451.7 442526.6 416556.4 449616.1
[3,] 362243.2 390081.6 375078.9 357189.0 238865.6 374930.4 355587.4 376225.6
[4,] 395933.7 424512.6 415370.1 399474.1 248817.4 411624.7 387746.1 416812.1
[5,] 359885.7 388510.9 380336.2 364911.4 212381.4 375962.1 351537.5 381834.6
[6,] 363550.1 392138.7 383328.6 367649.4 217755.2 379341.0 355340.7 384795.5
[,145] [,146] [,147] [,148] [,149] [,150] [,151] [,152]
[1,] 505678.9 382301.6 419133.9 503205.0 424843.1 415085.8 419343.1 418529.5
[2,] 517218.3 406733.7 439088.2 515392.5 445132.7 440455.8 445902.2 441840.6
[3,] 423505.7 343289.4 363368.4 422760.8 369996.1 378243.5 386816.9 374136.7
[4,] 478080.6 377013.8 405465.4 476588.5 411730.3 411372.4 417928.0 410898.7
[5,] 447454.6 341003.9 370842.8 445615.9 377009.6 375234.6 381577.1 375247.8
[6,] 448620.7 344636.9 373612.4 446899.5 379831.1 378975.0 385519.2 378618.7
[,153] [,154] [,155] [,156] [,157]
[1,] 545155.3 419347.1 623743.6 459359.3 413416.5
[2,] 555740.3 442559.7 655380.5 480771.0 433997.3
[3,] 460053.8 374580.8 606903.8 407244.1 359885.8
[4,] 516052.6 411529.0 632069.0 448059.8 400878.2
[5,] 486038.4 375906.1 595324.9 413060.6 366025.2
[6,] 487011.1 379258.2 599930.5 416036.4 368916.1
read_csv("data/US/COP2020/COP2020_tract.txt") %>%
filter(STATEFP == "04") %>%
st_as_sf(coords = c("LONGITUDE", "LATITUDE"), crs = 4326) %>%
mutate(nearest = st_nearest_feature(., AZ_hosp)) %>%
mutate(distance = st_distance(., AZ_hosp[nearest,], by_element = TRUE))
Simple feature collection with 1765 features and 6 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -114.7927 ymin: 31.33967 xmax: -109.0779 ymax: 36.98995
Geodetic CRS: WGS 84
# A tibble: 1,765 × 7
STATEFP COUNTYFP TRACTCE POPULATION geometry nearest
* <chr> <chr> <chr> <dbl> <POINT [°]> <int>
1 04 001 942600 1549 (-109.8449 36.76841) 123
2 04 001 942700 4491 (-109.3544 36.77035) 123
3 04 001 944000 5348 (-109.088 35.78314) 48
4 04 001 944100 5495 (-109.2781 36.37803) 123
5 04 001 944201 4021 (-109.6018 36.17521) 123
6 04 001 944202 3608 (-109.5276 36.16716) 123
7 04 001 944301 3789 (-109.7019 36.34859) 123
8 04 001 944302 2685 (-109.6809 36.00098) 123
9 04 001 944901 3369 (-109.4626 35.66766) 78
10 04 001 944902 4201 (-109.7004 35.67758) 78
# ℹ 1,755 more rows
# ℹ 1 more variable: distance [m]
tidygeocoder
package to geocode addresseslibrary(tidygeocoder)
AZ_hosp %>%
mutate(addr =
str_c(ADDRESS, ", ", CITY, ", AZ ", ZIP)) %>%
slice_head(n = 5) %>%
geocode(addr, method = "osm")
# A tibble: 5 × 58
OBJECTID OBJECTID_1 RUN_DATE source BUREAU FACID FACILITY_N LICENSE_NU
<int> <int> <date> <chr> <chr> <chr> <chr> <chr>
1 1 2822 2024-05-06 ASPEN MED AZTH00002 BANNER- UNI… <NA>
2 2 2823 2024-05-06 ASPEN MED AZTH00003 BANNER UNIV… <NA>
3 3 2824 2024-05-06 ASPEN MED AZTH00004 MAYO CLINIC… <NA>
4 4 3774 2024-05-06 ASPEN MED BH7347 VIA LINDA B… SH11520
5 5 4893 2024-05-06 ASPEN MED MED0198 CANYON VIST… H7130
# ℹ 50 more variables: LICENSE_EF <date>, LICENSE_EX <date>, MEDICARE_I <chr>,
# MEDICARE_1 <chr>, MEDICARE_2 <chr>, TELEPHONE <chr>, FACILITY_T <int>,
# TYPE <chr>, SUBTYPE <chr>, CATEGORY <chr>, ICON_CATEG <chr>,
# MEDICARE_T <chr>, LICENSE_TY <chr>, LICENSE_SU <chr>, CAPACITY <int>,
# ADDRESS <chr>, CITY <chr>, ZIP <int>, COUNTY <chr>, OPERATION_ <chr>,
# X_Is_Publi <chr>, HOSPITAL_G <chr>, KeyID <chr>, ADHSCODE <chr>,
# N_AddressT <chr>, N_LocatorT <chr>, N_ADDRESS <chr>, N_ADDR2 <chr>, …
It is a good practice to add the following information to your map:
cowplot
, place a quantile breaks choropleth map of diabetes adjusted prevalence (PLACES) also within Arizona counties.sf
object